【编者按】本文的作者是计算机工程师Kevin Markham;热衷烹饪,痴迷戏剧,偶尔参加铁人三项运动;为 General Assembly 讲授为期11周的数据科学课程,在 SlideRule 指导学生学习数据科学,还是 约翰·霍普金斯大学数据科学Coursera专项课程 的社区教学助理(CTA);业余时间制作 视频教程 参加 Kaggle 的比赛。日前他撰文谈及了几种监督式学习算法的比较,值得一看。 以下为正文: 我所讲授的 数据科学课程 涵盖了该领域大部分内容,但尤其关注机器学习(machine learning)。除了讲授模型的评估过程和度量方法以外,很明显,我们还讲算法本身,主要是监督式学习(supervised learning)算法。 在为期11周的课程接近尾声的时候,我们花了几个小时检查所用的课程资料。我们希望学生能够逐渐理解他们所学的东西。要掌握的技能之一就是在解决机器学习的问题时,有能力在不同的监督式学习算法中做出明智的选择。虽然使用“蛮力”(把每种情况都试一遍,看看哪种最好)的方法有其价值所在,但比这价值大得多的是能够在不同算法之间做出权衡利弊的选择。 我决定为学生们组织一场比赛。我给他们一张空白的表格,列出所讲的监督式学习算法,让学生从几个不同维度对这些算法进行比较。我在网上找到了这样的表格,自己先弄一张再说!下面就是,一起看看: 上图为表格部分截图,中文版下载请点击 这里。
贡献出这张表格,有两个原因:
这张表格是集鄙人经验与研究的产物,在任何这些算法的领域,我都称不上是专家。如果你有能够改进表格的建议,给我留言哟!
我意识到每种算法的特征及相应的评价都可以基于数据的具体情况(以及数据的调优程度)发生变化。因此有人会认为试图做“客观”的比较是欠考虑的。然而,我认为作为监督式学习算法入门的一般性参考,这张表仍然有其价值所在。
Duang~Duang~Duang~!
学习资源
补充说明:转发到Tweet, 请点击这里 ,还可以来 Kaggle 和 DataTau 讨论!
原文链接: Comparing supervised learning algorithms(译者/白华 责编/钱曙光)
本文为ImapBox编译整理,未经允许不得转载,如需转载请联系market#csdn.net(#换成@)
本网页所有文字内容由 imapbox邮箱云存储,邮箱网盘, iurlBox网页地址收藏管理器 下载并得到。
ImapBox 邮箱网盘 工具地址: https://www.imapbox.com/download/ImapBox.5.5.1_Build20141205_CHS_Bit32.exe
PC6下载站地址:PC6下载站分流下载
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox 网页视频 工具地址: https://www.imapbox.com/download/ImovieBox4.7.0_Build20141115_CHS.exe
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算