Elasticsearch(下面简称ES)中的bool查询在业务中使用也是比较多的。在一些非实时的分页查询,导出的场景,我们经常使用bool查询组合各种查询条件。 Bool查询包括四种子句, 我这里只介绍下must和filter两种子句,因为是我们今天要讲的重点。其它的可以自行查询官方文档。 从上面的描述来看,你应该已经知道,如果只看查询的结果,must和filter是一样的。区别是场景不一样。如果结果需要算分就使用must,否则可以考虑使用filter。 光说比较抽象,看个例子,下面两个语句,查询的结果是一样的。 使用filter过滤时间范围, 使用must过滤时间范围, 查询的结果都是, 上一节你已经知道了must和filter的基本用法和区别。简单来讲,如果你的业务场景不需要算分,使用filter可以真的让你的查询效率飞起来。 为了说明filter查询高效的原因,我们需要引入ES的一个概念 query context filter context 并且filter context会自动被ES缓存结果,效率进一步提高。 对于bool查询,must使用的就是 我们可以通过一个示例验证下。继续使用第一节的例子,我们通过kibana自带的 使用must查询的执行过程是这样的: 可以明显看到,此次查询计算了相关性分数,而且score的部分占据了查询时间的10分之一左右。 filter的查询我就不截图了,区别就是score这部分是0,也就是不计算相关性分数。 除了是否计算相关性算分的差别,经常使用的过滤器将被Elasticsearch自动缓存,以提高性能。 我自己曾经在一个项目中,对一个业务查询场景做了这种优化,当时线上的索引文档数量大概是3000万左右,改成filter之后,查询的速度几乎快了一倍。 我截了几张图,你来感受下。 我们应该根据自己的实际业务场景选择合适的查询语句,在某些不需要相关性算分的查询场景,尽量使用
bool查询简介
GET kibana_sample_data_ecommerce/_search { "size": 1000, "query": { "bool": { "must": [ {"term": { "currency": "EUR" }} ], "filter": { "range": { "order_date": { "gte": "2020-01-25T23:45:36.000+00:00", "lte": "2020-02-01T23:45:36.000+00:00" } } } } } }
GET kibana_sample_data_ecommerce/_search { "size": 1000, "query": { "bool": { "must": [ {"term": { "currency": "EUR" }}, {"range": { "order_date": { "gte": "2020-01-25T23:45:36.000+00:00", "lte": "2020-02-01T23:45:36.000+00:00" } }} ] } } }
{ "took" : 25, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1087, "relation" : "eq" }, ...
filter比较高效的原理
query context
和 filter context
。query context
关注的是,文档到底有多匹配查询的条件,这个匹配的程度是由相关性分数决定的,分数越高自然就越匹配。所以这种查询除了关注文档是否满足查询条件,还需要额外的计算相关性分数.filter context
关注的是,文档是否匹配查询条件,结果只有两个,是和否。没有其它额外的计算。它常用的一个场景就是过滤时间范围。query context
,而filter使用的就是filter context
。search profiler
来看看ES的查询的详细过程。
可以看到时间整个缩短了一半。总结
filter context
可以让你的查询更加高效。
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算