关于Tensorflow模型保存与读取的问题 想请教一下各位大神,我用tensorflow搭建了一个神经网络,想要保存和读取神经网络的输出,看过一篇相关的代码,自己也尝试着写了一下,但是有问题,哪位大神可以解答一下应该怎么改?代码如下。 运行后错误如下: NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for E:/my net/nn.ckpt Caused by op ‘save_29/RestoreV2_6’, defined at: NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for E:/my net/nn.ckpt求助大神,Tensorflow构架的保存读取问题
import tensorflow as tf import numpy as np import pandas as pd def add_layer_hidden(inputs,in_size,out_size,activation_function=None): weights1 = tf.Variable(tf.random_normal([in_size, out_size]),dtype=tf.float32) biases1 = tf.Variable(tf.zeros([1, out_size]) + 0.1,dtype=tf.float32) a = weights1[0] b = weights1[1] Wx_plus_b = tf.matmul(inputs, weights1) + biases1 if activation_function == None: outputs = Wx_plus_b else: outputs = activation_function( Wx_plus_b ) return outputs,a,b x_train = np.linspace(0,2,100,endpoint=True) X_t=pd.read_csv('E:/test.csv',header=0,encoding='gbk') X=X_t.values #生成输入X值 Xs=tf.placeholder(tf.float32,[None,2])#生成X占位符 #定义隐含层,隐含层有10个神经元 l1=add_layer_hidden(Xs,2,10,activation_function=tf.nn.sigmoid)[0] #定义输出层,假设没有任何激活函数 def add_layer_output(inputs,in_size,out_size,activation_function=None): weights2 = tf.Variable(tf.random_normal([in_size, out_size]),dtype=tf.float32) biases2= tf.Variable(tf.zeros([1, out_size]) + 0.1,dtype=tf.float32) c = weights2 Wx_plus_b = tf.matmul(inputs, weights2) + biases2 if activation_function == None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs,c prediction=add_layer_output(l1,10,1,activation_function=None)[0] w11=add_layer_hidden(Xs,2,10,activation_function=tf.nn.sigmoid)[1] w12=add_layer_hidden(Xs,2,10,activation_function=tf.nn.sigmoid)[2] w2=add_layer_output(l1,10,1,activation_function=None)[1] difx = tf.matmul(tf.multiply(l1*(1-l1),w11),w2)#dy/dx,dif形状[100,1],即对应点的导数值 dift = tf.matmul(tf.multiply(l1*(1-l1),w12),w2)#dy/dt,dif形状[100,1],即对应点的导数值 loss1 = tf.square(difx+dift) loss2 = tf.square(prediction[0]-prediction[99]) loss=tf.reduce_mean(tf.reduce_sum(loss1+loss2,reduction_indices=[1]))#生成损失函数 train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)#进行梯度计算以及反向传播 init=tf.global_variables_initializer() sess = tf.InteractiveSession() sess.run(init) for i in range(3000):#训练50000次 sess.run(train_step,feed_dict={Xs:X}) if i%50 == 0: total_loss = sess.run(loss,feed_dict={Xs:X}) print(total_loss) saver = tf.train.Saver(max_to_keep=1) saver.save(sess,'E:/my net/nn.ckpt',global_step=3000) saver = tf.train.Saver(max_to_keep=1) #保存模型,训练一次后可以将训练过程注释掉 saver.restore(sess, 'E:/my net/nn.ckpt') #复现保存的模型
[[Node: save_29/RestoreV2_6 = RestoreV2[dtypes=[DT_FLOAT], _device=”/job:localhost/replica:0/task:0/cpu:0″](_arg_save_29/Const_0_0, save_29/RestoreV2_6/tensor_names, save_29/RestoreV2_6/shape_and_slices)]]
File “E:Anacondaenvstensorflowlibsite-packagesspyderutilsipythonstart_kernel.py”, line 241, in
main()
File “E:Anacondaenvstensorflowlibsite-packagesspyderutilsipythonstart_kernel.py”, line 237, in main
kernel.start()
File “E:Anacondaenvstensorflowlibsite-packagesipykernelkernelapp.py”, line 477, in start
ioloop.IOLoop.instance().start()
File “E:Anacondaenvstensorflowlibsite-packageszmqeventloopioloop.py”, line 177, in start
super(ZMQIOLoop, self).start()
File “E:Anacondaenvstensorflowlibsite-packagestornadoioloop.py”, line 888, in start
handler_func(fd_obj, events)
File “E:Anacondaenvstensorflowlibsite-packagestornadostack_context.py”, line 277, in null_wrapper
return fn(*args, **kwargs)
File “E:Anacondaenvstensorflowlibsite-packageszmqeventloopzmqstream.py”, line 440, in _handle_events
self._handle_recv()
File “E:Anacondaenvstensorflowlibsite-packageszmqeventloopzmqstream.py”, line 472, in _handle_recv
self._run_callback(callback, msg)
File “E:Anacondaenvstensorflowlibsite-packageszmqeventloopzmqstream.py”, line 414, in _run_callback
callback(*args, **kwargs)
File “E:Anacondaenvstensorflowlibsite-packagestornadostack_context.py”, line 277, in null_wrapper
return fn(*args, **kwargs)
File “E:Anacondaenvstensorflowlibsite-packagesipykernelkernelbase.py”, line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File “E:Anacondaenvstensorflowlibsite-packagesipykernelkernelbase.py”, line 235, in dispatch_shell
handler(stream, idents, msg)
File “E:Anacondaenvstensorflowlibsite-packagesipykernelkernelbase.py”, line 399, in execute_request
user_expressions, allow_stdin)
File “E:Anacondaenvstensorflowlibsite-packagesipykernelipkernel.py”, line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File “E:Anacondaenvstensorflowlibsite-packagesipykernelzmqshell.py”, line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File “E:Anacondaenvstensorflowlibsite-packagesIPythoncoreinteractiveshell.py”, line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File “E:Anacondaenvstensorflowlibsite-packagesIPythoncoreinteractiveshell.py”, line 2808, in run_ast_nodes
if self.run_code(code, result):
File “E:Anacondaenvstensorflowlibsite-packagesIPythoncoreinteractiveshell.py”, line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File “”, line 1, in
runfile(‘E:/学习材料/偏微分方程与神经网络/tensorflow搭建神经网络.py’, wdir=‘E:/学习材料/偏微分方程与神经网络’)
File “E:Anacondaenvstensorflowlibsite-packagesspyderutilssitesitecustomize.py”, line 710, in runfile
execfile(filename, namespace)
File “E:Anacondaenvstensorflowlibsite-packagesspyderutilssitesitecustomize.py”, line 101, in execfile
exec(compile(f.read(), filename, ‘exec’), namespace)
File “E:/学习材料/偏微分方程与神经网络/tensorflow搭建神经网络.py”, line 67, in
saver = tf.train.Saver(max_to_keep=1) #保存模型,训练一次后可以将训练过程注释掉
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythontrainingsaver.py”, line 1139, in init
self.build()
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythontrainingsaver.py”, line 1170, in build
restore_sequentially=self._restore_sequentially)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythontrainingsaver.py”, line 691, in build
restore_sequentially, reshape)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythontrainingsaver.py”, line 407, in _AddRestoreOps
tensors = self.restore_op(filename_tensor, saveable, preferred_shard)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythontrainingsaver.py”, line 247, in restore_op
[spec.tensor.dtype])[0])
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythonopsgen_io_ops.py”, line 640, in restore_v2
dtypes=dtypes, name=name)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythonframeworkop_def_library.py”, line 767, in apply_op
op_def=op_def)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythonframeworkops.py”, line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File “E:Anacondaenvstensorflowlibsite-packagestensorflowpythonframeworkops.py”, line 1269, in init
self._traceback = _extract_stack()
[[Node: save_29/RestoreV2_6 = RestoreV2[dtypes=[DT_FLOAT], _device=”/job:localhost/replica:0/task:0/cpu:0″](_arg_save_29/Const_0_0, save_29/RestoreV2_6/tensor_names, save_29/RestoreV2_6/shape_and_slices)]]
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算