一名菜鸟学习编程技术,记录所学知识并给大家,希望大家多多支持。 数字信号指**自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数**表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示,例如,字长为2位的二进制数可表示4种数字信号,它们是00、01、10和11 。 由于数字信号是用两种物理状态来表示0和1的,故其抵抗材料本身干扰和环境干扰的能力都比模拟信号强很多; 在数字电路中,由于数字信号只有0、1两个状态,它的值是通过中央值来判断的,在中央值以下规定为0,以上规定为1, 所以即使混人了其他干扰信号,只要干扰信号的值不超过闽值范围,就可以再现出原来的信号。即使因干扰信号的值超过阂值范围而出现了误码,只要采用一定的编 码技术,也很容易将出错的信号检测出来并加以纠正因此,与模拟信号相比,数字信号在传输过程中具有更高的抗干扰能力,更远的传输距离,且失真幅度小。 数 字信号在传输过程中不仅具有较高的抗干扰性,还可以通过压缩,占用较少的带宽,实现在相同的带宽内传输更多、更高音频、视频等数字信号的效果。此外,数字信号还可用半导体存储器来存储,并可直接用于计算机处理。若将电话、传真、电视所处理的音频、文本、视频等数据及其他各种不同形式的信号都转换成数字脉冲 来传输,还有利于组成统一的通信网。 从原始信号转换到数字信号一般要经地抽样、量化和编码这样三个过程。 话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲频率f≥2fm (fm是话音信号的最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。 例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率f≥2×3400=6800Hz。如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz。 抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。量化有两种方式,量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。量化方式在取整时有舍有入,即0~0.5伏间的输入电压都输出0伏,0.5~1?5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2。因此,采用有舍有入法进行量化,误差较小。 实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。可以证明,量化失真功率?, 即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输 就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢 复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因为,称8个量化级的量化为3比特量化。8比特量化则是指共有个量化级的量化。 抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码。具体说来,就是用n比 特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流。编码过程在接收端,可以按所收到的信 息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽 样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽。除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等。 在通信理论中,编码分为信源编码和信道编码两大类。所谓信源编码是指将信号源中多余的信息除去,形成一个适合用来传输的信号。为了抑制信道噪声对信号的干 扰,往往还需要对信号进行再编码,编成在接收端不易为干扰所弄错的形式,这称为信道编码。为了对付干扰,必须花费更多的时间,传送一些多余的重复信号,从 而占用了更多频带,这是通信理论中的一条基本原理。一、数字信号
在现代技术的信号处理中,数字信号发挥的作用越来越大,几乎复杂的信号处理都离不开数字信号;或者说,只要能把解决问题的方法用数学公式表示,就能用计算机来处理代表物理量的数字信号。
1.1 抽样
1.2 量化
1.3 编码
二、数字信号的优点
技术上可以采用限幅和对数字信号定时采样的办法来消除数字信号中叠加的噪声和干扰。
对数字信号进行信道编码时,将加入校验码。接收机利用校验码检查信号是否传错。
数字化节目中的重复信号很容易被压缩掉,可以减少传送节目所需的信道带宽和时间,提高了信道频带的利用率。
使用数学算法很容易对数字信号加密。加密的复杂程度主要取决于接收机的解密能力,接收机解密的能力有多强大,数字信号被加密的程度就可以有多复杂,这将使非法窃听变得很困难。
计算机室采用数字信号工作的,采用数字信号的系统有利于使用计算机来提高通信效率和通信指令,降低通信网络建设和维护成本。
数字信号可以很容易地存储在计算机的存储器中,以便用时分方式共享通信信道
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算