@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个。 全连接层的input_features是多少。首先来看一下这个简单的网络。这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解。 首先,我们先把forward写一下: 就写到这里就可以了。其次,我们初始化一下网络,随机一个输入: 结果如下: 显而易见,咱们这个全连接层的input_features为256。 没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深 入的研习计算机基础知识,整理好了,我放在我们的微信公众号《程序员学府》,如果你也不甘平庸, 那就与我一起在编码之外,不断成长吧! 其实这里不仅有技术,更有那些技术之外的东西,比如,如何 做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?点击加入
今天小编就为大家一篇pytorch神经网络之卷积层与全连接层参数的设置方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错。class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 96, kernel_size=11, stride=4), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) ) self.fc = nn.Sequential( nn.Linear(???, 4096) ...... ...... )
def forward(self, x): x = self.conv(x) print x.size()
import torch from Alexnet.AlexNet import * from torch.autograd import Variable if __name__ == '__main__': net = AlexNet() data_input = Variable(torch.randn([1, 3, 96, 96])) # 这里假设输入图片是96x96 print data_input.size() net(data_input)
(1L, 3L, 96L, 96L) (1L, 256L, 1L, 1L)
非常感谢你的阅读
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是
想做你自己想成为高尚人,加油!
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算