在了解二叉树之前,我们要先了解树的一些概念,方便我们对二叉树的理解。 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。 树的术语: 二叉树是树的特殊一种,具有如下特点: 二叉树的性质: 在二叉树中除了叶子节点,其他所有节点的度为2,且所有的叶子节点都在同一层上,这样的二叉树成为满二叉树。 如果二叉树中除去最后一层叶子节点后为满二叉树,且最后一层的叶子节点依次从左到右分布,则这样的二叉树称为完全二叉树 小例题: 解:n0 + n1 + n2 = 200, 其中n0 = n2 + 1,n1 = 0或者1 (n1=1,出现在最下一层节点数为奇数,最下一层节点数为偶数,则n1=0), 因为n0为整数,所以最后算得n0 = 100。 完全二叉树的性质: 验证: 第一条: 第二条: 第三条: 顺序存储:将数据结构存储在固定的数组中,然在遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树。二叉树通常以链式存储。 节点的结构: 遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal) 广度优先遍历(层次遍历) 深度优先遍历 深度优先遍历有三种方式: 先序遍历(根->左->右):先访问根结点,再先序遍历左子树,最后再先序遍历右子树, 中序遍历(左->根->右):先中序遍历左子树,然后再访问根结点,最后再中序遍历右子树, 后序遍历(左->右->根):先后序遍历左子树,然后再后序遍历右子树,最后再访问根结点。 中序遍历: 4 2 5 1 6 3 7 后序遍历: 4 5 2 6 7 3 1 递归实现先序遍历 递归实现中序遍历 递归实现后序遍历 测试代码: 和我们预期的结果完全相同。
树与二叉树
什么是树?
它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
节点的度: 一个节点含有的子树的个数称为该节点的度;
树的度: 一棵树中,最大的节点的度称为树的度;
根结点: 树的最顶端的节点,继续往下分为子节点
父节点: 子节点的上一层为父节点
兄弟节点: 具有同一个父节点的节点称为兄弟节点
叶子节点/终端节点: 不再有子节点的节点为叶子节点二叉树:
推倒过程:在一棵二叉树中,除了叶子节点(度为0)外,就剩下度为2(n2)和度为1(n1)的节点了。则树的节点总数为T = n0 + n1 + n2;在二叉树中节点总数为T,而连线总数为T-1 = 2*n2 + n1,所以就有:n0 + n1 + n2 – 1 = 2 *n2 + n1,得到n0=n2+1。特殊的二叉树
满二叉树
满二叉树的特点:
完全二叉树
完全二叉树的特点:
某完全二叉树共有200个节点,该二叉树中共有()个叶子节点?
1. 如果i=1,则节点是二叉树的根,无父节点,如果i>1,则其父节点为i/2,向下取整
2. 如果2*1>n,那么节点i没有左孩子,否则其左孩子为2i
3. 如果2i+1>n那么节点没有右孩子,否则右孩子为2i+1
当i=1时,为根节点。当i>1时,比如结点为7,他的双亲就是7/2= 3;结点9双亲为4.
结点6,62 = 12>10,所以结点6无左孩子,是叶子结点。结点5,52 = 10,左孩子是10,结点4,为8.
结点5,2*5+1>10,没有右孩子,结点4,则有右孩子。树的存储、表示与遍历
树的存储与表示
某个节点为空是用0表示。
二叉树的建立
class Node(object): """二叉树节点的封装""" def __init__(self, element=None, lchild=None, rchild=None): self.element = element self.lchild = lchild self.rchild = rchild class Tree(object): """二叉树的封装""" def __init__(self, root=None): self.root = root def __add__(self, element): # 插入节点的封装 node = Node(element) # 1.判断是否为空,则对根结点进行赋值 if not self.root: self.root = node # 2. 如果存在跟结点,将根结点放入队列 else: queue = [] # 将根结点放入队列中 queue.append(self.root) # 对队列中的所有节点进行遍历 # 这里的循环每次都是从根结点往下循环的 while queue: # 3.弹出队列中的第一个元素(第一次弹出的为根节点,然后是根的左节点,根的右节点,依次类推) cur = queue.pop(0) if not cur.lchild: cur.lchild = node return elif not cur.rchild: cur.rchild = node return else: # 左右子树都存在就将左右子树添加到队列中去 queue.append(cur.lchild) queue.append(cur.rchild)
二叉树的遍历
遍历结果为1,2,3,4,5,6,7 def breadth_travel(self): """利用队列实现树的层次遍历""" if self.root == None: return # 将二叉树的节点依次放入队列中,通过访问队列的形式实现树的遍历 queue = [] queue.append(self.root) while queue: node = queue.pop(0) print(node.element, end=',') if node.lchild != None: queue.append(node.lchild) if node.rchild != None: queue.append(node.rchild) print()
先序遍历: 1 2 4 5 3 6 7 # 深度优先遍历:先序遍历---根 左 右 def preorder(self, root): """递归实现先序遍历""" if not root: return print(root.element, end=',') self.preorder(root.lchild) self.preorder(root.rchild)
# 深度优先遍历:中序遍历---左 根 右 def inorder(self, root): """递归实现中序遍历""" if not root: return self.inorder(root.lchild) print(root.element, end=',') self.inorder(root.rchild)
# 深度优先遍历:后序遍历---左 右 根 def postorder(self, root): """递归实现后序遍历""" if not root: return self.postorder(root.lchild) self.postorder(root.rchild) print(root.element, end=',')
if __name__ == '__main__': binaryTree = Tree() for i in range(7): binaryTree.__add__(i+1) # 广度优先遍历 print("广度优先:") binaryTree.breadth_travel() # 深度优先,先序遍历 root = binaryTree.root binaryTree.preorder(root) print('深度优先--先序遍历') binaryTree.inorder(root) print('深度优先--中序遍历') binaryTree.postorder(root) print('深度优先--后序遍历')
广度优先: 1,2,3,4,5,6,7, 1,2,4,5,3,6,7,深度优先--先序遍历 4,2,5,1,6,3,7,深度优先--中序遍历 4,5,2,6,7,3,1,深度优先--后序遍历
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算