ImapBox 课程推荐:《迈向数据科学家:带你玩转Python数据分析》,讲师齐伟,苏州研途教育科技有限公司CTO,苏州大学应用统计专业硕士生指导委员会委员;已出版《跟老齐学Python:轻松入门》《跟老齐学Python:Django实战》、《跟老齐学Python:数据分析》和《Python大学实用教程》畅销图书。 Pandas 系列文章(正在更新中…): 另有 NumPy、Matplotlib 系列文章已更新完毕,欢迎关注: 推荐学习资料与网站(博主参与部分文档翻译): 对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。Pandas 提供了一个灵活高效的 GroupBy 功能,虽然“分组”(group by)这个名字是借用 SQL 数据库语言的命令,但其理念引用发明 R 语言 frame 的 Hadley Wickham 的观点可能更合适:分裂(Split)、应用(Apply)和组合(Combine)。 分组运算过程:Split —> Apply —> Combine 官方介绍:https://pandas.pydata.org/docs/user_guide/groupby.html 常见的 GroupBy 对象:Series.groupby、DataFrame.groupby,基本语法如下: 官方文档: https://pandas.pydata.org/docs/reference/api/pandas.Series.groupby.html https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html 常用参数解释如下: groupby() 进行分组,GroupBy 对象没有进行实际运算,只是包含分组的中间数据,示例如下: 前面通过 传入多个数组的列表: 自定义分组键: 通过字典进行分组: 通过函数进行分组: 通过不同索引层级进行分组: GroupBy 对象支持迭代,对于单层分组,可以产生一组二元元组,由分组名和数据块组成: 对于多层分组,元组的第一个元素将会是由键值组成的元组,第二个元素为数据块: GroupBy 对象支持转换成列表或字典: 聚合指的是任何能够从数组产生标量值的数据转换过程,常用于对分组后的数据进行计算 之前的例子已经用过一些内置的聚合函数,比如 mean、count、min 以及 sum 等。常见的聚合运算如下表所示: 官方文档:https://pandas.pydata.org/docs/reference/groupby.html 应用示例: 如果自带的内置函数满足不了我们的要求,则可以自定义一个聚合函数,然后传入 使用字典可以对不同列作用不同的聚合函数:
文章目录
这里是一段防爬虫文本,请读者忽略。 本文原创首发于 ImapBox,作者 TRHX。 博客首页:https://itrhx.blog.csdn.net/ 本文链接:https://itrhx.blog.csdn.net/article/details/106804881 未经授权,禁止转载!恶意转载,后果自负!尊重原创,远离剽窃!
【01×00】GroupBy 机制
【02×00】GroupBy 对象
Series.groupby(self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False) → ’groupby_generic.SeriesGroupBy’
DataFrame.groupby(self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False) → ’groupby_generic.DataFrameGroupBy’
参数
描述
by
映射、函数、标签或标签列表,用于确定分组依据的分组。如果 by 是函数,则会在对象索引的每个值上调用它。
如果传递了 dict 或 Series,则将使用 Series 或 dict 的值来确定组(将 Series 的值首先对齐;请参见.align() 方法)。
如果传递了 ndarray,则按原样使用这些值来确定组。标签或标签列表可以按自身中的列传递给分组。 注意,元组被解释为(单个)键
axis
沿指定轴拆分,默认
0
,0
or ‘index’
,1
or ‘columns’
,只有在 DataFrame 中才有 1
or 'columns’
level
如果轴是 MultiIndex(层次结构),则按特定层级进行分组,默认 None
as_index
bool 类型,默认 True,对于聚合输出,返回以组标签为索引的对象。仅与 DataFrame 输入相关。
as_index=False
实际上是“SQL样式”分组输出
sort
bool 类型,默认 True,对组键排序。关闭此选项可获得更好的性能。注:这不影响每组的观察顺序。Groupby 保留每个组中行的顺序
group_keys
bool 类型,默认 True,调用 apply 方法时,是否将组键(keys)添加到索引( index)以标识块
squeeze
bool 类型,默认 False,如果可能,减少返回类型的维度,否则返回一致的类型
>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -0.804160 -0.868905 1 b one -0.086990 0.325741 2 a two 0.757992 0.541101 3 b three -0.281435 0.097841 4 a two 0.817757 -0.643699 5 b two -0.462760 -0.321196 6 a one -0.403699 0.602138 7 a three 0.883940 -0.850526 >>> >>> obj.groupby('key1') <pandas.core.groupby.generic.DataFrameGroupBy object at 0x03CDB7C0> >>> >>> obj['data1'].groupby(obj['key1']) <pandas.core.groupby.generic.SeriesGroupBy object at 0x03CDB748>
【03×00】GroupBy Split 数据分裂
【03×01】分组运算
groupby()
方法获得了一个 GroupBy 对象,它实际上还没有进行任何计算,只是含有一些有关分组键 obj['key1']
的中间数据而已。换句话说,该对象已经有了接下来对各分组执行运算所需的一切信息。例如,我们可以调用 GroupBy 的 mean()
方法来计算分组平均值,size()
方法返回每个分组的元素个数:>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -0.544099 -0.614079 1 b one 2.193712 0.101005 2 a two -0.004683 0.882770 3 b three 0.312858 1.732105 4 a two 0.011089 0.089587 5 b two 0.292165 1.327638 6 a one -1.433291 -0.238971 7 a three -0.004724 -2.117326 >>> >>> grouped1 = obj.groupby('key1') >>> grouped2 = obj['data1'].groupby(obj['key1']) >>> >>> grouped1.mean() data1 data2 key1 a -0.395142 -0.399604 b 0.932912 1.053583 >>> >>> grouped2.mean() key1 a -0.395142 b 0.932912 Name: data1, dtype: float64 >>> >>> grouped1.size() key1 a 5 b 3 dtype: int64 >>> >>> grouped2.size() key1 a 5 b 3 Name: data1, dtype: int64
【03×02】按类型按列分组
groupby()
方法 axis
参数默认是 0,通过设置也可以在其他任何轴上进行分组,也支持按照类型(dtype)进行分组:>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -0.607009 1.948301 1 b one 0.150818 -0.025095 2 a two -2.086024 0.358164 3 b three 0.446061 1.708797 4 a two 0.745457 -0.980948 5 b two 0.981877 2.159327 6 a one 0.804480 -0.499661 7 a three 0.112884 0.004367 >>> >>> obj.dtypes key1 object key2 object data1 float64 data2 float64 dtype: object >>> >>> obj.groupby(obj.dtypes, axis=1).size() float64 2 object 2 dtype: int64 >>> >>> obj.groupby(obj.dtypes, axis=1).sum() float64 object 0 1.341291 aone 1 0.125723 bone 2 -1.727860 atwo 3 2.154858 bthree 4 -0.235491 atwo 5 3.141203 btwo 6 0.304819 aone 7 0.117251 athree
【03×03】自定义分组
groupby()
方法中可以一次传入多个数组的列表,也可以自定义一组分组键。也可以通过一个字典、一个函数,或者按照索引层级进行分组。>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -0.841652 0.688055 1 b one 0.510042 -0.561171 2 a two -0.418862 -0.145983 3 b three -1.104698 0.563158 4 a two 0.329527 -0.893108 5 b two 0.753653 -0.342520 6 a one -0.882527 -1.121329 7 a three 1.726794 0.160244 >>> >>> means = obj['data1'].groupby([obj['key1'], obj['key2']]).mean() >>> means key1 key2 a one -0.862090 three 1.726794 two -0.044667 b one 0.510042 three -1.104698 two 0.753653 Name: data1, dtype: float64 >>> >>> means.unstack() key2 one three two key1 a -0.862090 1.726794 -0.044667 b 0.510042 -1.104698 0.753653
>>> import pandas as pd >>> import numpy as np >>> obj = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'], 'key2' : ['one', 'two', 'one', 'two', 'one'], 'data1' : np.random.randn(5), 'data2' : np.random.randn(5)}) >>> obj key1 key2 data1 data2 0 a one -0.024003 0.350480 1 a two -0.767534 -0.100426 2 b one -0.594983 -1.945580 3 b two -0.374482 0.817592 4 a one 0.755452 -0.137759 >>> >>> states = np.array(['Wuhan', 'Beijing', 'Beijing', 'Wuhan', 'Wuhan']) >>> years = np.array([2005, 2005, 2006, 2005, 2006]) >>> >>> obj['data1'].groupby([states, years]).mean() Beijing 2005 -0.767534 2006 -0.594983 Wuhan 2005 -0.199242 2006 0.755452 Name: data1, dtype: float64
【03x03x01】字典分组
>>> import pandas as pd >>> import numpy as np >>> obj = pd.DataFrame(np.random.randint(1, 10, (5,5)), columns=['a', 'b', 'c', 'd', 'e'], index=['A', 'B', 'C', 'D', 'E']) >>> obj a b c d e A 1 4 7 1 9 B 8 2 4 7 8 C 9 8 2 5 1 D 2 4 2 8 3 E 7 5 7 2 3 >>> >>> obj_dict = {'a':'Python', 'b':'Python', 'c':'Java', 'd':'C++', 'e':'Java'} >>> obj.groupby(obj_dict, axis=1).size() C++ 1 Java 2 Python 2 dtype: int64 >>> >>> obj.groupby(obj_dict, axis=1).count() C++ Java Python A 1 2 2 B 1 2 2 C 1 2 2 D 1 2 2 E 1 2 2 >>> >>> obj.groupby(obj_dict, axis=1).sum() C++ Java Python A 1 16 5 B 7 12 10 C 5 3 17 D 8 5 6 E 2 10 12
【03x03x02】函数分组
>>> import pandas as pd >>> import numpy as np >>> obj = pd.DataFrame(np.random.randint(1, 10, (5,5)), columns=['a', 'b', 'c', 'd', 'e'], index=['AA', 'BBB', 'CC', 'D', 'EE']) >>> obj a b c d e AA 3 9 5 8 2 BBB 1 4 2 2 6 CC 9 2 4 7 6 D 2 5 5 7 1 EE 8 8 8 2 2 >>> >>> def group_key(idx): """ idx 为列索引或行索引 """ return len(idx) >>> obj.groupby(group_key).size() # 等价于 obj.groupby(len).size() 1 1 2 3 3 1 dtype: int64
【03x03x03】索引层级分组
>>> import pandas as pd >>> import numpy as np >>> columns = pd.MultiIndex.from_arrays([['Python', 'Java', 'Python', 'Java', 'Python'], ['A', 'A', 'B', 'C', 'B']], names=['language', 'index']) >>> obj = pd.DataFrame(np.random.randint(1, 10, (5, 5)), columns=columns) >>> obj language Python Java Python Java Python index A A B C B 0 7 1 9 8 5 1 4 5 4 5 6 2 4 3 1 9 5 3 6 6 3 8 1 4 7 9 2 8 2 >>> >>> obj.groupby(level='language', axis=1).sum() language Java Python 0 9 21 1 10 14 2 12 10 3 14 10 4 17 11 >>> >>> obj.groupby(level='index', axis=1).sum() index A B C 0 8 14 8 1 9 10 5 2 7 6 9 3 12 4 8 4 16 4 8
【03×04】分组迭代
>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -1.088762 0.668504 1 b one 0.275500 0.787844 2 a two -0.108417 -0.491296 3 b three 0.019524 -0.363390 4 a two 0.453612 0.796999 5 b two 1.982858 1.501877 6 a one 1.101132 -1.928362 7 a three 0.524775 -1.205842 >>> >>> for group_name, group_data in obj.groupby('key1'): print(group_name) print(group_data) a key1 key2 data1 data2 0 a one -1.088762 0.668504 2 a two -0.108417 -0.491296 4 a two 0.453612 0.796999 6 a one 1.101132 -1.928362 7 a three 0.524775 -1.205842 b key1 key2 data1 data2 1 b one 0.275500 0.787844 3 b three 0.019524 -0.363390 5 b two 1.982858 1.501877
>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -1.088762 0.668504 1 b one 0.275500 0.787844 2 a two -0.108417 -0.491296 3 b three 0.019524 -0.363390 4 a two 0.453612 0.796999 5 b two 1.982858 1.501877 6 a one 1.101132 -1.928362 7 a three 0.524775 -1.205842 >>> >>> for group_name, group_data in obj.groupby(['key1', 'key2']): print(group_name) print(group_data) ('a', 'one') key1 key2 data1 data2 0 a one -1.088762 0.668504 6 a one 1.101132 -1.928362 ('a', 'three') key1 key2 data1 data2 7 a three 0.524775 -1.205842 ('a', 'two') key1 key2 data1 data2 2 a two -0.108417 -0.491296 4 a two 0.453612 0.796999 ('b', 'one') key1 key2 data1 data2 1 b one 0.2755 0.787844 ('b', 'three') key1 key2 data1 data2 3 b three 0.019524 -0.36339 ('b', 'two') key1 key2 data1 data2 5 b two 1.982858 1.501877
【03×05】对象转换
>>> import pandas as pd >>> import numpy as np >>> data = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randn(8), 'data2': np.random.randn(8)} >>> obj = pd.DataFrame(data) >>> obj key1 key2 data1 data2 0 a one -0.607009 1.948301 1 b one 0.150818 -0.025095 2 a two -2.086024 0.358164 3 b three 0.446061 1.708797 4 a two 0.745457 -0.980948 5 b two 0.981877 2.159327 6 a one 0.804480 -0.499661 7 a three 0.112884 0.004367 >>> >>> grouped = obj.groupby('key1') >>> list(grouped1) [('a', key1 key2 data1 data2 0 a one -0.607009 1.948301 2 a two -2.086024 0.358164 4 a two 0.745457 -0.980948 6 a one 0.804480 -0.499661 7 a three 0.112884 0.004367), ('b', key1 key2 data1 data2 1 b one 0.150818 -0.025095 3 b three 0.446061 1.708797 5 b two 0.981877 2.159327)] >>> >>> dict(list(grouped1)) {'a': key1 key2 data1 data2 0 a one -0.607009 1.948301 2 a two -2.086024 0.358164 4 a two 0.745457 -0.980948 6 a one 0.804480 -0.499661 7 a three 0.112884 0.004367, 'b': key1 key2 data1 data2 1 b one 0.150818 -0.025095 3 b three 0.446061 1.708797 5 b two 0.981877 2.159327}
【04×00】GroupBy Apply 数据应用
【04×01】聚合函数
方法
描述
count
非NA值的数量
describe
针对Series或各DataFrame列计算汇总统计
min
计算最小值
max
计算最大值
argmin
计算能够获取到最小值的索引位置(整数)
argmax
计算能够获取到最大值的索引位置(整数)
idxmin
计算能够获取到最小值的索引值
idxmax
计算能够获取到最大值的索引值
quantile
计算样本的分位数(0到1)
sum
值的总和
mean
值的平均数
median
值的算术中位数(50%分位数)
mad
根据平均值计算平均绝对离差
var
样本值的方差
std
样本值的标准差
>>> import pandas as pd >>> import numpy as np >>> obj = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randint(1,10, 8), 'data2': np.random.randint(1,10, 8)} >>> obj = pd.DataFrame(obj) >>> obj key1 key2 data1 data2 0 a one 9 7 1 b one 5 9 2 a two 2 4 3 b three 3 4 4 a two 5 1 5 b two 5 9 6 a one 1 8 7 a three 2 4 >>> >>> obj.groupby('key1').sum() data1 data2 key1 a 19 24 b 13 22 >>> >>> obj.groupby('key1').max() key2 data1 data2 key1 a two 9 8 b two 5 9 >>> >>> obj.groupby('key1').min() key2 data1 data2 key1 a one 1 1 b one 3 4 >>> >>> obj.groupby('key1').mean() data1 data2 key1 a 3.800000 4.800000 b 4.333333 7.333333 >>> >>> obj.groupby('key1').size() key1 a 5 b 3 dtype: int64 >>> >>> obj.groupby('key1').count() key2 data1 data2 key1 a 5 5 5 b 3 3 3 >>> >>> obj.groupby('key1').describe() data1 ... data2 count mean std min 25% ... min 25% 50% 75% max key1 ... a 5.0 3.800000 3.271085 1.0 2.0 ... 1.0 4.0 4.0 7.0 8.0 b 3.0 4.333333 1.154701 3.0 4.0 ... 4.0 6.5 9.0 9.0 9.0 [2 rows x 16 columns]
【04×02】自定义函数
GroupBy.agg(func)
或 GroupBy.aggregate(func)
方法中即可。func 的参数为 groupby 索引对应的记录。>>> import pandas as pd >>> import numpy as np >>> obj = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randint(1,10, 8), 'data2': np.random.randint(1,10, 8)} >>> obj = pd.DataFrame(obj) >>> obj key1 key2 data1 data2 0 a one 9 7 1 b one 5 9 2 a two 2 4 3 b three 3 4 4 a two 5 1 5 b two 5 9 6 a one 1 8 7 a three 2 4 >>> >>> def peak_range(df): return df.max() - df.min() >>> >>> obj.groupby('key1').agg(peak_range) data1 data2 key1 a 8 7 b 2 5 >>> >>> obj.groupby('key1').agg(lambda df : df.max() - df.min()) data1 data2 key1 a 8 7 b 2 5
【04×03】对不同列作用不同函数
>>> import pandas as pd >>> import numpy as np >>> obj = {'key1' : ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'a'], 'key2' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'data1': np.random.randint(1,10, 8), 'data2': np.random.randint(1,10, 8)} >>> obj = pd.DataFrame(obj) >>> obj key1 key2 data1 data2 0 a one 9 7 1 b one 5 9 2 a two 2 4 3 b three 3 4 4 a two 5 1 5 b two 5 9 6 a one 1 8 7 a three 2 4 >>> >>> dict1 = {'data1':'mean', 'data2':'sum'} >>> dict2 = {'data1':['mean','max'], 'data2':'sum'} >>> >>> obj.groupby('key1').agg(dict1) data1 data2 key1 a 3.800000 24 b 4.333333 22 >>> >>> obj.groupby('key1').agg(dict2) data1 data2 mean max sum key1 a 3.800000 9 24 b 4.333333 5 22
【04×04】GroupBy.apply()
apply()
方法会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。>>> import pandas as pd >>> obj = pd.DataFrame({'A':['bob','sos','bob','sos','bob','sos','bob','bob'], 'B':['one','one','two','three','two','two','one','three'], 'C':[3,1,4,1,5,9,2,6], 'D':[1,2,3,4,5,6,7,8]}) >>> obj A B C D 0 bob one 3 1 1 sos one 1 2 2 bob two 4 3 3 sos three 1 4 4 bob two 5 5 5 sos two 9 6 6 bob one 2 7 7 bob three 6 8 >>> >>> grouped = obj.groupby('A') >>> for name, group in grouped: print(name) print(group) bob A B C D 0 bob one 3 1 2 bob two 4 3 4 bob two 5 5 6 bob one 2 7 7 bob three 6 8 sos A B C D 1 sos one 1 2 3 sos three 1 4 5 sos two 9 6 >>> >>> grouped.apply(lambda x:x.describe()) # 对 bob 和 sos 两组数据使用 describe 方法 C D A bob count 5.000000 5.000000 mean 4.000000 4.800000 std 1.581139 2.863564 min 2.000000 1.000000 25% 3.000000 3.000000 50% 4.000000 5.000000 75% 5.000000 7.000000 max 6.000000 8.000000 sos count 3.000000 3.000000 mean 3.666667 4.000000 std 4.618802 2.000000 min 1.000000 2.000000 25% 1.000000 3.000000 50% 1.000000 4.000000 75% 5.000000 5.000000 max 9.000000 6.000000 >>> >>> grouped.apply(lambda x:x.min()) # # 对 bob 和 sos 两组数据使用 min 方法 A B C D A bob bob one 2 1 sos sos one 1 2
这里是一段防爬虫文本,请读者忽略。 本文原创首发于 ImapBox,作者 TRHX。 博客首页:https://itrhx.blog.csdn.net/ 本文链接:https://itrhx.blog.csdn.net/article/details/106804881 未经授权,禁止转载!恶意转载,后果自负!尊重原创,远离剽窃!
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算